Filter Media Selection for Coal Fired Plants

John D. McKenna
ETS, Inc.
October 16, 2008
McIlvaine Company Hot Topic Hour
Filter Media Options

- Pulse Jet
 - PPS Felt
 - P-84® Felt
 - Woven Fiberglass
 - Woven Fiberglass with PTFE membrane
 - Teflon® Felt
 - PPS Felt / P-84® Blends

- Reverse Air
 - Woven Fiberglass
 - Woven Fiberglass with PTFE membrane
PM$_{2.5}$ Impacts

- On May 16th, 2008 the EPA published the final new source review (NSR) standard for fine particulate matter.

- The rule finalizes several NSR requirements for stationary sources that emit PM$_{2.5}$ and other pollutants that contribute to fine particulate.

- The new rule defines a major source as "one of 28 specific categories listed in the current federal prevention of significant deterioration requirements and (the source) emits more than 100 tons per year (tpy); or if (more than one source) emits 250 tpy or more of fine particulates."

- The rule became effective as of July 15th, 2008.
State Rules

- SCAQMD rule in fall 2005 reduced the frequency of compliance tests when verified fabrics are used in the cement industry. They are considering expanding this approach to other sources.

- EPA OAQPS sent a memo in September 2007 to the Regional Offices encouraging actions similar to SCAQMD’s rule.
The Environmental Technology Verification Program (ETV)

- Started by the U. S. Environmental Protection Agency in October 1995
- Generate independent & credible data on the performance of innovative technologies
- Help organizations, industries, business, states, communities, and individuals make more informed decisions when selecting new environmental technologies.
Environmental Technology Verification (ETV) Results

A-K membrane L-T non-membrane

- PM 2.5, 0.1 mg/dscm
- Total mass, 0.1mg/dscm
- Pressure drop, cm H20
ETV Future Programs

- Vendors/developers will benefit in that a favorable verification will expedite market penetration for their new and innovative filtration products.

- End users will find the verification statements to be a valuable resource in comparing filter media alternatives and will specify filtration products having favorable verification statements.

Courtesy of Andrew Trenholm, RTI International
ETV Future Programs

- Products:
 - Reverse air cleaning
 - Bonded (vs sewn) bags
 - Pleated (cartridge) filters
 - High temperature ceramics and metals
 - Coated media; e.g., activated carbon

- Vendor specified test conditions:
 - Dust type
 - Gas temperature
 - Gas/cloth ratio

Courtesy of Andrew Trenholm, RTI International
Typical QA/QC Programs

What should be done in a typical QA/QC Program for BFPs?

- Dimensional and construction inspection of prototype & production bags to verify product specifications
- Lab validation of mechanical & physical properties of fabric
- Filtration performance testing
Bag Quality Control Program

Fabric
- Construction
- Tensile
- Permeability
- Burst
- Flex
- Finish
- Filtration Performance

Thread
- Material
- Strength

Hardware
- Caps
- Rings
- Bands

Bags
- Inspect for general quality of workmanship
- Length as fabricated
- Length under tension
- Cuff to thimble & cap mate
BFP Verification Parameters

- Outlet fine particle concentration, PM 2.5
- Outlet total particle concentration, total mass
- Residual pressure drop increase
- Average residual pressure drop
- Average filtration cycle time
- Mass weight gain of sample
PPS Media Specification Example

Fabric filter bags shall be:

- PPS felt
- Weight min. 17.0 ounces/yd2
- Heat set, calendared & smooth faces
- Mullen burst strength min. of 500 psi
- Shrinkage max 2% (@ 400 °F for 2 hours)
- Permeability 30 ± 8 cfm (@ 0.5 in. H$_2$O)
- Filtration Performance
Filter Bag Quality Assurance/Control

<table>
<thead>
<tr>
<th>TEST</th>
<th>ASTM METHOD</th>
<th>TEST LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABRIC</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Thickness</td>
<td>D1777</td>
<td>YES</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Warp</td>
<td>D1682-64</td>
<td>YES</td>
</tr>
<tr>
<td>Fill</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mullen Burst</td>
<td>D3787-80A</td>
<td>YES</td>
</tr>
<tr>
<td>Permeability</td>
<td>D737-75</td>
<td>YES</td>
</tr>
<tr>
<td>Organic Content (LOI)</td>
<td>D578-83</td>
<td>YES</td>
</tr>
<tr>
<td>MIT Flex</td>
<td>D2176-69</td>
<td></td>
</tr>
<tr>
<td>Filtration Performance*</td>
<td>D6830-02</td>
<td>YES</td>
</tr>
<tr>
<td>Microscopic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THREAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>D4030-83</td>
<td>YES</td>
</tr>
<tr>
<td>Organic Content (LOI)</td>
<td>D4030-83</td>
<td>YES</td>
</tr>
</tbody>
</table>

* All testing will be in accordance with the EPA Environmental Technology Verification (ETV) protocol for Baghouse Filtration Products (BFP) using ASTM Method D6830-02.
Summary & Recommendations

- ETV/BFP has proven to be a very valuable tool for:
 - facilitating market entry of commercial ready filtration fabrics
 - verifying vendor filtration performance & pressure drop claims

- ASTM 6830 with more than 100 tests conducted has proven to be:
 - an essential component of QA/QC programs when purchasing new bag sets
 - an excellent tool for filtration performance screening of development stage fabric
 - a suitable test for monitoring long term performance deterioration
Summary & Recommendations

- There have been a limited number of cases where ETV/BFP & ASTM 6830 have successfully proven to be a regulatory tool in lieu of stack emission testing.

- Both PM 2.5 and total emission test results have consistently shown that the fundamental filtration capability of the vast majority of fabrics tested far exceeds any existing emission control requirement.